Decoding Interleaved Gabidulin Codes using Alekhnovich’s Algorithm

Sven Puchingera, Sven Müelicha, David Mödingerb,
Johan Rosenkilde né Nielsenc and Martin Bosserta 1

aInstitute of Communications Engineering, Ulm University, Ulm, Germany
bInstitute of Distributed Systems, Ulm University, Ulm, Germany
cDepartment of Applied Mathematics & Computer Science, Technical University of
Denmark, Lyngby, Denmark

\section*{Abstract}
We prove that Alekhnovich’s algorithm can be used for row reduction of skew polynomial matrices. This yields an $O(\ell^3 n^{(\omega+1)/2} \log(n))$ decoding algorithm for ℓ-Interleaved Gabidulin codes of length n, where ω is the matrix multiplication exponent, improving in the exponent of n compared to previous results.

\textbf{Keywords:} Gabidulin Codes, Characteristic Zero, Low-Rank Matrix Recovery

\section{Introduction}
It is shown in \cite{1} that \textit{Interleaved Gabidulin codes of length $n \in \mathbb{N}$ and interleaving degree $\ell \in \mathbb{N}$ can be error- and erasure-decoded by transforming the...}
following skew polynomial \[2\] matrix into weak Popov form (cf. Section 2)\(^2\):

\[
B = \begin{bmatrix}
x^{\gamma_0} & s_1 x^{\gamma_1} & s_2 x^{\gamma_2} & \ldots & s_{\ell} x^{\gamma_{\ell}} \\
0 & g_1 x^{\gamma_1} & 0 & \ldots & 0 \\
0 & 0 & g_2 x^{\gamma_2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & g_{\ell} x^{\gamma_{\ell}}
\end{bmatrix}, \tag{1}
\]

where the skew polynomials \(s_1, \ldots, s_{\ell}, g_1, \ldots, g_{\ell}\) and the non-negative integers \(\gamma_0, \ldots, \gamma_{\ell}\) arise from the decoding problem and are known at the receiver. Due to lack of space, we cannot give a description of Interleaved Gabidulin codes, the mentioned procedure and the resulting decoding radius here and therefore refer to [1, Section 3.1.3]. By adapting row reduction\(^3\) algorithms known for polynomial rings \(\mathbb{F}[x]\) to skew polynomials, a decoding complexity of \(O((\ell n^2)\log(n))\) can be achieved [1]. In this paper, we adapt Alekhnovich’s algorithm [7] for row reduction of \(\mathbb{F}[x]\) matrices to the skew polynomial case.

2 Preliminaries

Let \(\mathbb{F}\) be a finite field and \(\sigma\) an \(\mathbb{F}\)-automorphism. A skew polynomial ring \(\mathbb{F}[x, \sigma]\)\([2]\) contains polynomials of the form \(a = \sum_{i=0}^{\deg a} a_i x^i\), where \(a_i \in \mathbb{F}\) and \(a_{\deg a} \neq 0\) (\(\deg a\) is the degree of \(a\)), which are multiplied according to the rule \(x \cdot a = \sigma(a) \cdot x\), extended recursively to arbitrary degrees. This ring is non-commutative in general. All polynomials in this paper are skew polynomials.

It was shown in [6] for linearized polynomials and generalized in [3] to arbitrary skew polynomials that two such polynomials of degrees \(\leq s\) can be multiplied with complexity \(\mathcal{M}(s) \in O(s^{(\omega+1)/2})\) in operations over \(\mathbb{F}\), where \(\omega\) is the matrix multiplication exponent.

A polynomial \(a\) has length \(\text{len } a\) if \(a_i = 0\) for all \(i = 0, \ldots, \deg a - \text{len } a\) and \(a_{\deg a - \text{len } a + 1} \neq 0\). We can write \(a = \tilde{a} x^{\deg a - \text{len } a + 1}\), where \(\deg \tilde{a} \leq \text{len } a\), and multiply \(a, b \in \mathbb{F}[x, \sigma]\) by \(a \cdot b = [\tilde{a} \cdot \sigma^{\deg a - \text{len } a + 1}(\tilde{b})] x^{\deg a + \deg a - \text{len } a - \text{len } b + 1}\). Computing \(\sigma^i(\alpha)\) with \(\alpha \in \mathbb{F}\), \(i \in \mathbb{N}\) is in \(O(1)\) (cf. [3]). Hence, \(a\) and \(b\) of length \(s\) can be multiplied in \(\mathcal{M}(s)\) time, although possibly \(\deg a, \deg b \gg s\).

Vectors \(\mathbf{v}\) and matrices \(\mathbf{M}\) are denoted by bold and small/capital letters. Indices start at 1, e.g. \(\mathbf{v} = (v_1, \ldots, v_r)\) for \(r \in \mathbb{N}\). \(\mathbf{E}_{i,j}\) is the matrix containing only one non-zero entry = 1 at position \((i,j)\) and \(\mathbf{I}\) is the identity matrix. We denote the \(i\)th row of a matrix \(\mathbf{M}\) by \(\mathbf{m}_i\). The degree of a vector \(\mathbf{v} \in \mathbb{F}[x, \sigma]^r\) is the maximum of the degrees of its components \(\deg \mathbf{v} = \max_i \{\deg v_i\}\) and

\(^2\) Afterwards, the corresponding information words are obtained by \(\ell\) many divisions of skew polynomials of degree \(O(n)\), which can be done in \(O(\ell n^{(\omega+1)/2} \log(n))\) time [3].

\(^3\) By row reduction we mean to transform a matrix into weak Popov form by row operations.
the degree of a matrix M is the sum of its rows’ degrees $\deg M = \sum_i \deg m_i$.

The leading position (LP) of v is the rightmost position of maximal degree $\text{LP}(v) = \max\{i : \deg v_i = \deg v\}$. The leading coefficient (LC) of a polynomial a is $\text{LC}(a) = a_{\deg a}x^{\deg a}$ and the leading term (LT) of a vector v is $\text{LT}(v) = v_{\text{LP}(v)}$. A matrix $M \in \mathbb{F}[x, \sigma]^{r \times r}$ is in weak Popov form (wPf) if the leading positions of its rows are pairwise distinct. E.g., the following matrix is in wPf since $\text{LP}(m_1) = 2$ and $\text{LP}(m_2) = 1$

$$M = \begin{bmatrix} x^2 + x & x^2 + 1 \\ x^3 + x^2 + x + 1 \\ \end{bmatrix}.$$

Similar to [7], we define an accuracy approximation to depth $t \in \mathbb{N}_0$ of skew polynomials as $a_t = \sum_{i=\deg a-t+1}^{\deg a} a_i x^i$. For vectors, it is defined as $v_t = (v_{\min\{0, t, \deg v-v_1\}}, \ldots, v_{\min\{0, t, \deg v-v_r\}})$ and for matrices row-wise. E.g., with M as above,

$$M_{|2} = \begin{bmatrix} x^2 + x & x^2 \\ x^3 & x^3 \end{bmatrix} \text{ and } M_{|1} = \begin{bmatrix} x^2 \\ x^4 & 0 \end{bmatrix}.$$

We can extend the definition of the length of a polynomial to vectors v as $\text{len}(v) = \max_i (\deg v - \deg v_i + \text{len} v_i)$ and to matrices as $\text{len}(M) = \max_i \{\text{len}(m_i)\}$. With this notation, we have $\text{len}(a_t) \leq t$, $\text{len}(v_t) \leq t$ and $\text{len}(M_{|t}) \leq t$.

3 Alekhnovich’s Algorithm over Skew Polynomials

Alekhnovich’s algorithm [7] was proposed for transforming matrices over ordinary polynomials $\mathbb{F}[x]$ into wPf. Here, we show that, with a few modifications, it also works with skew polynomials. As in the original paper, we prove the correctness of Algorithm 2 (main algorithm) using the auxiliary Algorithm 1.

Algorithm 1 R(M)

Input: Module basis $M \in \mathbb{F}[x, \sigma]^{r \times r}$ with $\deg M = n$

Output: $U \in \mathbb{F}[x, \sigma]^{r \times r}$: $U \cdot M$ is in wPf or $\deg(U \cdot M) \leq \deg M - 1$

1. $U \leftarrow I$
2. While $\deg M = n$ and M is not in wPf
3. Find i, j such that $\text{LP}(m_i) = \text{LP}(m_j)$ and $\deg m_i \geq \deg m_j$
4. $\delta \leftarrow \deg m_i - \deg m_j$ and $\alpha \leftarrow \text{LC}(\text{LT}(m_i))/\theta^\delta(\text{LC}(\text{LT}(m_j)))$
5. $U \leftarrow (I - \alpha x^\delta E_{i,j}) \cdot U$ and $M \leftarrow (I - \alpha x^\delta E_{i,j}) \cdot M$
6. Return U

Theorem 3.1

Algorithm 1 is correct and if $\text{len}(M) \leq 1$, it is in $O(r^3)$.

Proof. Inside the while loop, the algorithm performs a so-called simple transformation (ST). It is shown in [1] that such an ST on an $\mathbb{F}[x, \sigma]$-matrix M
preserves both its rank and row space (this does not trivially follow from the $\mathbb{F}[x]$ case due to non-commutativity) and reduces either $\text{LP}(m_i)$ or $\deg m_i$. At some point, M is in wPf, or $\deg m_i$ and likewise $\deg M$ is reduced by one. The matrix U keeps track of the STs, i.e. multiplying M by $(I - \alpha x^dE_{i,j})$ from the left is the same as applying an ST on M. At termination, $M = U \cdot M'$, where M' is the input matrix of the algorithm. Since $\sum_i \text{LP}(m_i)$ can be decreased at most r^2 times without changing $\deg M$, the algorithm performs at most r^2 STs. Multiplying $(I - \alpha x^dE_{i,j})$ by a matrix V consists of scaling a row with αx^d and adding it to another (target) row. Due to the accuracy approximation, all monomials of the non-zero polynomials in the scaled and the target row have the same power, implying a cost of r for each ST. The claim follows. \blacksquare

We can decrease a matrix’ degree by at least t or transform it into wPf by t recursive calls of Algorithm 1. We can write this as $R(M, t) = U \cdot R(U \cdot M)$, where $U = R(M, t-1)$ for $t > 1$ and $U = I$ if $t = 1$. As in [7], we speed this method up by two modifications. The first one is a divide-&-conquer (D&C) trick, where instead of reducing the degree of a “$(t-1)$-reduced” matrix $U \cdot M$ by 1 as above, we reduce a “t'-reduced” matrix by another $t-t'$ for an arbitrary t'. For $t' \approx t/2$, the recursion tree has a balanced workload.

Lemma 3.2 Let $t' < t$ and $U = R(M, t')$. Then,
$$R(M, t) = R[U \cdot M, t - (\deg M - \deg(U \cdot M))] \cdot U.$$

Proof. U reduces reduces $\deg M$ by at least t' or transforms M into wPf. Multiplication by $R[U \cdot M, t - (\deg M - \deg(U \cdot M))]$ further reduces the degree of this matrix by $t - (\deg M - \deg(U \cdot M)) \geq t - t'$ (or $U \cdot M$ in wPf). \square

The second lemma allows to compute only on the top coefficients of the input matrix inside the divide-&-conquer tree, reducing the overall complexity.

Lemma 3.3 $R(M, t) = R(M|_{t}, t)$

Proof. Arguments completely analogous to the $\mathbb{F}[x]$ case of [7, Lemma 2.7] hold. \square

Lemma 3.4 $R(M, t)$ contains polynomials of length $\leq t$.

Proof. The proof works as in the $\mathbb{F}[x]$ case, cf. [7, Lemma 2.8], by taking care of the fact that $\alpha x^a \cdot \beta x^b = \alpha \sigma^e(\beta) x^{a+b}$ for all $\alpha, \beta \in \mathbb{F}$, $a, b \in \mathbb{N}_0$. \square

Algorithm 2 $\hat{R}(M, t)$

Input: Module basis $M \in \mathbb{F}[x, \sigma]^{r \times r}$ with $\deg M = n$

Output: $U \in \mathbb{F}[x, \sigma]^{r \times r}$: $U \cdot M$ is in wPf or $\deg(U \cdot M) \leq \deg M - t$
1. If \(t = 1 \), then Return \(R(M|_1) \)
2. \(U_1 \leftarrow \hat{R}(M|_t, \lfloor t/2 \rfloor) \) and \(M_1 \leftarrow U_1 \cdot M|_t \)
3. Return \(R(M_1, t - (\deg M|_t - \deg M_1)) \cdot U_1 \)

Theorem 3.5 Algorithm 2 is correct and has complexity \(O(r^3M(t)) \).

Proof. Correctness follows from \(R(M, t) = \hat{R}(M, t) \) by induction (for \(t = 1 \), see Theorem 3.1). Let \(U = \hat{R}(M|_t, \lfloor t/2 \rfloor) \) and \(U = R(M|_t, \lfloor t/2 \rfloor) \). Then,

\[
\hat{R}(M, t) = \hat{R}(U \cdot M|_t, t - (\deg M|_t - \deg (U \cdot M|_t))) \cdot \hat{U}
\]

where (i) follows from the induction hypothesis, (ii) by Lemma 3.2, and (iii) by Lemma 3.3. Algorithm 2 calls itself twice on inputs of sizes \(\approx \frac{t}{2} \). The only other costly operations are the matrix multiplications in Lines 2 and 3 of matrices containing only polynomials of length \(\leq t \) (cf. Lemma 3.4). This costs \(r^2 \) times \(r \) multiplications \(M(t) \) and \(r^2 \) times \(r \) additions \(O(t) \) of polynomials of length \(\leq t \), having complexity \(O(r^3M(t)) \). The recursive complexity relation reads \(f(t) = 2 \cdot f(\frac{t}{2}) + O(r^3M(t)) \). By the master theorem, we get \(f(t) \in O(tf(1) + r^3M(t)) \). The base case operation \(R(M|_1) \) with cost \(f(1) \) is called at most \(t \) times since it decreases \(\deg M \) by 1 each time. Since \(\text{len}(M|_1) \leq 1 \), \(f(1) \in O(r^3) \) by Theorem 3.1. Hence, \(f(t) \in O(r^3M(t)) \). \(\square \)

4 Implications and Conclusion

The **orthogonality defect** \([1]\) of a square, full-rank, skew polynomial matrix \(M \) is \(\Delta(M) = \deg M - \deg \det M \), where \(\deg \det \) is the “determinant degree” function, see \([1]\). A matrix \(M \) in wPf has \(\Delta(M) = 0 \) and \(\deg \det M \) is invariant under row operations. Thus, if \(V \) is in wPf and obtained from \(M \) by simple transformations, then \(\deg V = \Delta(V) + \deg \det V = \deg M - \Delta(M) \). With \(\Delta(M) \geq 0 \), this implies that \(\hat{R}(M, \Delta(M)) \cdot M \) is always in wPf. It was shown in \([1]\) that \(B \) from Equation (1) has orthogonality defect \(\Delta(B) \in O(n) \), which implies the following theorem.

Theorem 4.1 (Main Statement) \(\hat{R}(B, \Delta(B)) \cdot B \) is in wPf. This implies that we can decode Interleaved Gabidulin codes in \(^5\) \(O(\ell^2n^{(\omega + 1)/2} \log(n)) \).

4 In D&C matrix multiplication algorithms, the length of polynomials in intermediate computations might be much larger than \(t \). Thus, we have to compute it naively in cubic time.

5 The \(\log(n) \) factor is due to the divisions in the decoding algorithm, following the row reduction step (see Footnote 2) and can be omitted if \(\log(n) \in o(\ell^2) \).
Table 1 compares the complexities of known decoding algorithms for Interleaved Gabidulin codes. Which algorithm is asymptotically fastest depends on the relative size of ℓ and n. Usually, one considers $n \gg \ell$, in which case the algorithms in this paper and in [4] provide—to the best of our knowledge—the fastest known algorithms for decoding Interleaved Gabidulin codes.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skew Berlekamp–Massey [5]</td>
<td>$O(\ell n^2)$</td>
</tr>
<tr>
<td>Skew Berlekamp–Massey (D&C) [4]</td>
<td>$O(\ell^K n^{\frac{\omega+1}{2}} \log(n))$, possibly $^6 K = 3$</td>
</tr>
<tr>
<td>Skew Demand–Driven* [1]</td>
<td>$O(\ell n^2)$</td>
</tr>
<tr>
<td>Skew Alekhnovich* (Theorem 3.5)</td>
<td>$O(\ell^3 n^{\frac{\omega}{2}} \log(n)) \subseteq O(\ell^3 n^{1.69} \log(n))$</td>
</tr>
</tbody>
</table>

Table 1
Comparison of decoding algorithms for Interleaved Gabidulin codes. Algorithms marked with * are based on the row reduction problem of [1]. 1Example $\omega \approx 2.37$.

In the case of Gabidulin codes ($\ell = 1$), we obtain an alternative to the Linearized Extended Euclidean algorithm from [6] of the same complexity. The algorithms are equivalent up to the implementation of a simple transformation.

References

6 In [4], the complexity is given as $O(n^{\frac{\omega+1}{2}} \log(n))$ and ℓ is considered to be constant. By a rough estimate, the complexity becomes $O(\ell^{O(1)} n^{\frac{\omega+1}{2}} \log(n))$ when including ℓ. We believe the exponent of ℓ is really 3 (or possibly ω) but this should be further analyzed.